24	1	5
----	---	---

	Table 2 ($cont.$)		Keterences
22	vs	58-28	BRAFMAN, O., ALEXANDER, E. & STEINBERGER, I. T. (1967).
25	a	0.019	Acta Cryst. 22, 347.
-2	vw	2.13	HAUPTMANOVÁ, K. & PÁTEK, K. (1963), Phys. Stat. Sol. 3.
- 5	w	5.37	383.
-8	а	0.004	KIELAWI I MARDIN S & STEINDERCER I T (1060) Acto
-11	S	29.72	Crust To be published
14	w	7.11	Cryst. To be published.
-17	vvs	100.00	MARDIX, C. (1966). M. Sc. Thesis, The Hebrew Univ.,
-20	s (-20 > -23)	40.17	Jerusalem.
-23	5	29.24	MARDIX, S., ALEXANDER, E., BRAFMAN, O. & STEINBERGER.
- 26	m	10.73	I. T. (1967). Acta Cryst. 22, 808.

Acta Cryst. (1969). B25, 2415

New double polytype region in a zinc sulphide needle. By I. KIFLAWI and S. MARDIX, Department of Physics, The Hebrew University, Jerusalem, Israel

(Received 19 February 1969)

Eleven new polytypes were found in a zinc sulphide needle. Two of them, 24L (653532) and 72R (653352)₃ were contained in a double polytype region.

The concept of a double polytype region was introduced in a previous publication (Mardix, Kiflawi & Kalman 1969). It is a region of uniform birefringence containing a great number of narrow domains belonging to two different polytypes. The formation of this kind of region was explained by a periodic slip process (Mardix, Kalman & Steinberger, 1968) propagating with the same periodicity in both directions of the c axis. The components of the three double polytype regions previously reported were rhombohedral polytypes, whilst the double polytype region reported in this work consists of a mixture of two polytypes; one rhombohedral 72R (653352)₃ and the other hexagonal 24L (653532). These polytypes can be formed from the parent polytype 72R (653442)₃ by a single slip of the 19th layer propagating with a periodicity of 24 in both directions of the c axis. The two polytypes have only one pair of successive Zhdanov numbers different in their Zhdanov sequences, in agreement with the properties of this kind of polytype region stated in the above mentioned work.

Table 2 (and)

The needle No. 106/34 investigated in this work was grown from the vapour phase at approximately 1200° C from pure ZnS powder. It contains single polytype regions as well as the double polytype region. The average diameter of the needle is 0.25 mm and it has a large hole along its c axis. A list of the polytypes found is given in Table 1. Eleven of them are new polytypes. Observed and calculated intensity distributions of the new polytypes are compared in Table 2. Their X-ray oscillation photographs are shown in Fig. 1. The procedure of identification is similar to that decribed elsewhere (Mardix, Alexander, Brafman & Steinberger, 1967).

Table 1. Polytypes found in specimen 106/34

Region	New polytypes found	Other polytypes found
а	$\begin{cases} 72R & (6 5 3 3 5 2)_3 \\ 24L & (6 5 3 5 3 2) \end{cases}$	
Ь	$72R(635622)_3$	
с	24L (2 2 6 2 2 6 2 2)	
d	$72R(10734)_3$	

Table	1	(cont.)

Region	New polytypes found	Other polytypes found
е	$72R(11\ 5\ 5\ 3)_3$	
$\left. \begin{array}{c} f \\ g \\ h \end{array} \right $	72R (7 3 5 2 5 2) ₃	
i	$72R(935322)_3$	
j	$72R(14523)_3$	
k	24L(213)	
1	$72R(14532)_3$	
т		24L (7 5 5 7)*

* Previously reported (Mardix, Brafman & Steinberger, 1967).

 Table 2. Comparison of the observed and calculated intensities of the new polytypes

1	Obs.	Calc.
72R (6 5	$5\ 3\ 3\ 5\ 2)_3$	
1	<i>vw</i>	2.56
4	vw	2.43
7	vvw	0.190
10	w	5.37
13	m (13 > 34)	12.41
16	W	5.21
19	m	17.30
22	vvs	100.00
25	vw	2.70
28	s (28 > 31)	34.54
31	S	27.62
34	m	9.62
-2	vvw	0.977
-5	w	4.72
-8	vw	2.35
-11	m	10.20
14	$m (-14 \sim -11)$	12.67
-17	m	13.05
- 20	$vw \ (-20 > -8)$	3.45
-23	vs	52.31
-26	S	22.07
- 29	vw	2.45
- 32	S	25.20
- 35	vw	2.44

Fig. 1. (10.1) row lines of oscillation photographs about the c axis of the new polytypes. Cu K radiation. 60 mm diameter camera. Magnification x2.5. The zero lines are indicated by arrows.

No.		Polytype	
1	Double polytype {	$72R(653352)_3$ 24L(653532)	
2	10	72R (6 3 5 6 2 2)	
3		42L (2 2 6 2 2 6 2 2)	
4		72R (10 7 3 4)3	
5		$72R(11553)_3$	
6		72R (7 3 5 2 5 2)3	
7*		72R (9 3 5 3 2 2)3	
8*		72R (14 5 2 3)3	
9		24L (21 3)) photographed
	&	72R (14 5 3 2)3	f simultaneously

* These photographs contain also reflexion spots from very narrow adjacent regions of unidentified polytypes.

1	Obs.	Calc.	l	Obs.	Calc.
211 (6 5 3	532)		72.R (10.7.3	4)2	
241 (0 5 5	332)	0.00	1	1/3 W	2.45
1	111141	0.275	4	1)1)142	0.145
2	<i>00 w</i>	10.47	7	2017	1.20
2	<i>III</i>	2.18	10	m (10 > 13)	5.65
3		3.46	13	m (10 > 15)	4.43
4	UW S	26.91	16	s.	18.38
5	5	5.62	10	$m (19 \sim 13)$	4.95
0	w	5.17	17	m (19 \approx 15)	4.95
/	W	100.00	22	05	76.37
8	vvs (8 > -1)	5.00	23	vus	70.57
9	W	5.90	20	W	2.39
10	w	5.23	51	\$	19.50
11	S	25.10	34	m	4.80
12	vw	6.17	-2	vvw(-2>4)	0.360
-1	vw (-1 > 4)	3.91	-2	m () T	4.41
-2	vvw	1.05	-8	vw (-8 > 7)	1.23
-3	vvw(-3 > -2)	2.18	-11	W	3.82
-4	m	13.84	-14	$m (-14 \sim 10)$	6.60
-5	W	4.67	-17	m	5.00
-6	w (-6 > -5)	5.62	20	vs	53-33
-7	vvs	87.82	-23	s (-23 > 16)	33.85
-8	w	6.25	-26	$vvs \ (-26 > 25)$	100.00
-9	w	5.90	-29	w	3.95
-10	vs	52.26	-32	w	3.78
-11	vw (-11 > -12)	4.36	-35	m	9.08
-12	UW	3.45			
			72R (11 5 5	5 3)3	
72R (6 3 5	5 6 2 2)3		1`	vw (1 > 4)	1.54
1	W	2.75	4	<i>vw</i>	0.927
4	m (4 > 10)	5.67	7	VW	1.12
7	w (7 > 1)	3.08	10	vw (10 > 7)	1.60
10	m	5.00	13	m	7.83
13	m	5.81	16	w	4·21
16	s (16 > -5)	17.00	19	m	10.05
19	s (19>16)	22.66	22	US	29.40
22	11115	74.62	25	vw (25 > 10)	2.45
25	1)W	1.44	28	s (28 > 31)	20.19
22	115	28.11	31	s (=== ; ; ;	11.62
20	115	29.82	34	1111W	0.735
3/	s	11.43	-2	1)W	0.870
.7	1111	1.56	5	vvw(-5>-11)	0.560
-2	c n s	10.39	-8	w	2.95
- 5	1171W '	0.192	-11	111)W	0.148
-0	w (-11 > -14)	3.69	_14	m	10.90
-11	$w (-14 \sim 1)$	3.03	17	w = (-17 > -8)	4.02
- 14	105	41.89	-20	w (-20 > -17)	6.42
-17	m	6.38	-23	1000	100.00
- 20	111	100.00	-26	$v_{s} = (-26 > 22)$	40.20
- 25	003	33.10	- 20	<i>U</i> 3 (<i>20 > 22</i>)	14.45
20	1)1)W	0.881	32	w (-32 > -35)	5.24
- 29	004	44.40	32	W (52 > 55)	4.59
- 32	03	0.152	- 55	w	4 57
- 35	u	0 102	77R (7 3 5	$252)_{2}$	
/	< 2 2 4 2 2)*		1	2 J 2/3	3.98
24 <i>L</i> (2 2	6 2 2 6 2 2)*	6.80	1	1121W2	0.590
0	W	20.05	7	1142	1.66
1	S	20.95	10	$\frac{10}{10}$	1.91
2	vw	3.33	10	(10 > 1)	2.84
3	vvw	1.08	15	07 (13 - 10)	2.30
4	a	12.01	10	n'' = (19 > -20)	33.28
5	m	13.01	17	3 (19 - 20)	100.00
6	vs	100.00	22	m (25 - 28)	20.02
. 7	vvs	100.00	23	m (23 > 20)	20.03
8	m	14.12	20	<i>m</i>	12.02
9	s (9>8)	1/.0/	21	US	4/.03
10	$s (10 \sim 9)$	1/*/0	54	<i>w</i>	2°14 1.50
11	vs	57.08	-2	W	4.27
12	m	13.14	-2		0.490
		1 1/1	- ð	(-0 > -3)	1.12
he observ	ed intensities are symmetri	cal with regard to	-11	m(-11 > -32)	0.461
ro line (l =	=0).		- 14	UUW	0.401

* The observed intensities are symmetrical with regard to the zero line (l=0).

	Table 2 (cont.)			Table 2 (cont.)	
-17 -20	vvw (-17 > -14)	1·05 24·54	2 3	vw vw (3>2)	0·342 0·711
-23	W	4.39	4	w	1.13
- 26	w (-26 > -23)	4.72	5	w (5 > 4)	1.53
-32	m (-32 > -29)	13.32	0 7	W (6 > 5) W (7 > 6)	1.84
-35	vw	2.60	8	w (7 > 0) w (8 > 7)	2.01
,	01	Cala	9	w (9 > 10)	1.93
	UDS.	Calc.	10	w (10 > 11)	1.71
12K (9333	(1 > 7)	1.33	11	w (11 > 12)	1.42
4	w (4 > 10)	4.58	-1	พ บบพ	0.090
7	vw	0.898	-2	vw	0.342
10	W	3.21	-3	vw (-3 > -2)	0.711
15	m w	9·95 4·54		W (-5 \wedge 4)	1.13
19	S	21.13	-6	w (-6 > -5)	1.84
22	s (22>19)	18.34	-7	w (-7 > -6)	2.01
25	vw	1.08	-8	vvs	100.00
20 31	W S	20.52		w (-9 > -10) w (-10 > -11)	1.93
34	w	3.11	-11	w (-10 > -11) w (-11 > -12)	1.42
-2	vvw(-2>-11)	0.674	-12	w	1.13
-5	w (-5 > -8)	4.38	1	Obs	Cala
-11	พ	0.401	72 R (14 5 3 2	003. Na	Calc.
14	s (-14 > -10)	14.19	1	-73 W	1.74
-17	m	7.32	4	vw (4>7)	0.966
-20	S	9.79	7	vw	0.851
-25 -26	UUS US	30.36	10	w = (13 > 10)	2.39
-29	s	11.76	16	w (16 > 13)	4.39
-32	w (-32 > -5)	5.64	19	w (19~10)	3.51
-35	S	17.31	22	vvs	100.00
72R (14 5 2	3)3		23	vs s	54·13 21·04
1	w	1.43	31	s	13.82
4	w (4 > 1)	2.13	34	VW	2.88
10	vvw w	0.274	-2	vvw	0.014
13	vvw (13 > 7)	0.760		w = (-8 > -11)	3.07
16	w	4.01	-11	w	2.71
25	W	3.74	-14	m	7.94
20 31	m S	16.27	-17 -20	w	3.55
34	m	7.17	-23	s S	23.99
-2	vvw(-2>7)	0.690	-26	S	18.51
-5	vvw	0.450	-29	w	2.80
-11	m (-11 > -32)	2.80	- 32	m m	5.46
-14	w	2.79		·/·	0.43
-17	<i>vw</i>	1.22		References	
-20 -23	W = (-20 > -29)	3·22 100·00	MARDIX S. ALEXA	NDER E BRAEMAN O	& STEINDEDCED
$-\frac{25}{26}$	vvs	50.01	I. T. (1967). Acta	<i>Cryst.</i> 22, 808.	\sim ordinate KOEK,
-29	W	1.96	MARDIX, S., BRAFN	MAN, O. & STEINBERG	er, I. T. (1967).
-32	m	4.98	Acta Cryst. 22, 8	05.	, , , , , , , , , , , , , , , , , , , ,
- 33	vw	1.4/	MARDIX, S., KALMA Acta Cryst A 24	AN, Z. H. & STEINBERG	Ger, I. T. (1968).
24L (21 5) 0	а	0.000	MARDIX, S., KIFLA	WI, I. & KALMAN. Z.	H. (1969). Acta
1	vvw	0.090	Cryst. B25, 1586.	,	(., ., ., .,